
Extending MPI to Accelerators

Jeff A. Stuart
University of California, Davis
stuart@cs.ucdavis.edu

Pavan Balaji
Argonne National Laboratories

balaji@mcs.anl.gov

John D. Owens
University of California, Davis
jowens@ece.ucdavis.edu

ABSTRACT
Current trends in computing and system architecture point
towards a need for accelerators such as GPUs to have in-
herent communication capabilities. We review previous and
current software libraries that provide pseudo-communication
abilities through direct message passing. We show how these
libraries are beneficial to the HPC community, but are not
forward-thinking enough. We give motivation as to why
MPI should be extended to support these accelerators, and
provide a road map of achievable milestones to complete
such an extension, some of which require advances in hard-
ware and device drivers.

1. INTRODUCTION
The world of High-Performance Computing (HPC) is no

longer CPU-only, as CPUs are largely hitting power and per-
formance walls. To first order, CPU clocks will not increase
in frequency for the foreseeable future. This has caused the
HPC community explore the use of accelerators such as the
graphics-processing unit (GPU).

Accelerators have an inherent problem in computing: they
are slave devices. The CPU controls these devices explic-
itly, and the accelerators do nothing but computation, own-
memory access, and participate in DMA transfers. Even
though accelerators often reside on the PCI-e bus, many
have no peer-to-peer capabilities, contradicting a primary
design goal of PCI-e. Another byproduct of being slave de-
vices is a lack of inherent message-passing capabilities. In
the modern compute node, only CPUs have the inherent
ability to communicate with other compute devices via MPI,
whether they be on the same node or on different nodes. We
see this as a deficiency and complication in programming
accelerators. Many algorithms port naturally to different
types of accelerators, except that they often contain small
fragments that require communication with other compute
devices. Modern practices dictate that at these points, users
exit their computational kernel to allow the CPU to issue
communication requests.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASBD 11, October 10, 2011, Galveston Island
Copyright 2011 ACM 978-1-4503-1439-8/12/04 ...$10.00.

If accelerators were to have message-passing capabilities,
we feel the obvious API is the Message-Passing Interface
(MPI) [2]. MPI is an industry-wide standard and is sup-
ported by virtually every high-speed interconnect manufac-
turer. Most HPC developers prefer to use MPI to develop
applications with low-level communication requirements (i.e.
at a lower level than global arrays or MapReduce). As accel-
erators do not inherently have communication capabilities,
they do not and cannot fully support MPI.

Our aim is to address MPI in the accelerator era, and
more specifically the issues of supporting MPI on acceler-
ators, and we use the GPU as an example. We wish to
provide a roadmap to port MPI to accelerators and do so by
expanding upon previous work in the area. As these ports
are not straightforward, we have to be careful in how we
choose to extend MPI, what support we offer initially on
each accelerator, and try to focus on the common aspects of
accelerators. The end goal of this paper is to explore how
to include accelerators as first-class MPI devices. We also
hope to spur vendor support — to the point where acceler-
ators natively support efficient and high-performance MPI
implementations.

2. PREVIOUS WORK
MPI is the most widely used communication library for

HPC. It combines simple-to-use communication routines
with advanced features like one-sided messaging. It has
wide-spread support from virtually all high-speed intercon-
nect manufacturers, making it a natural choice for HPC ap-
plications due to its high level of portability.

MPI is a low-level a library on which higher-level models
like global arrays or MapReduce can be built. Because of the
abstraction of higher-level libraries like these, they lack the
fine-grained control that MPI offers. We feel that bringing
MPI to accelerators is the first in a series of necessary steps
in making accelerators first-class citizens in HPC.

In order to leverage MPI on accelerators, researchers have
implemented several different extensions to, and variations
of, MPI. cudaMPI [3] provided an MPI-like interface that
handled the inherent memory copies from the GPU to the
CPU before the CPU executed an MPI call. However, thanks
to 0-copy memory1 introduced in CUDA 3 [4], cudaMPI is
redundant. GAMPI [1] took a different approach by making
GPUs logically separate MPI targets and providing default
communicators besides MPI COMM WORLD, such as an
all-CPU communicator, an all-GPU communicator, and a

10-copy memory is pinned system memory that is accessible
by both the CPU and accelerators.

local-GPUs communicator. However, as with cudaMPI, the
CPU was explicitly responsible for initiating communica-
tion.

Stuart and Owens implemented DCGN [6], a more in-
depth GPU message-passing library. DCGN provides the
point-to-point and collective capabilities of MPI directly to
CUDA kernels. While the CPU still must execute MPI calls,
DCGN hides this from the user and provides the illusion of
the GPU sourcing and sinking communication. DCGN man-
ages all the necessary PCI-e memory transfers behind the
scenes2. DCGN also introduces the notion of slots in order
to deal with ranks on a GPU. Because of the unique execu-
tion strategy of the GPU, the user specifies how many ranks
per GPU they would like, as opposed to forcing an arbitrary
number (e.g. one per GPU, or one per thread processor).

The biggest problem we see with cudaMPI, GAMPI, and
DCGN is simply the lack of hardware and driver support.
Only recently has a GPU vendor announced plans to in-
crease the GPU-NIC throughput (as is the case with the new
GPU-Direct technology between Infiniband-manufacturer Mel-
lanox and GPU-manufacturer NVIDIA). GPU-Direct tech-
nology removes the need for an extra buffer copy by the
CPU when transmitting data to or from a GPU, but the
CPU is still required to initiate the transfer. GPU-Direct
and other advances make much of cudaMPI and GAMPI ir-
relevant. And as the CPU must always execute MPI calls
itself, DCGN still would incur overhead in CPU cycles and
also possibly data-transit time.

Some of the troubles with DCGN are resident in another
common programming model: MPI with threads. MPI is
designed to be used with processes, but as the HPC world
migrates to multi-core and multi-processor clusters, devel-
opers are now leveraging CPU threads. For example, in a
multi-core, multi-socket node, a user might start one MPI
process per socket and then one thread per additional core
in the socket. All threads in a process share a rank, meaning
in an MPI-without-threads implementation, communication
must be explicitly handled by one thread. In the case of an
MPI-with-threads implementation, tags and/or other forms
of disambiguation must be used. We draw upon the latter
model for inspiration later in this paper.

3. ROADMAP
In an ideal situation, we would like to extend MPI to all

accelerators. Thus we propose changes in this section that,
while focused on the GPU because it is the most common
accelerator in use in HPC right now, are applicable to all
accelerators. We feel that the challenges in porting MPI to
the GPU will aid in porting to other accelerators. We focus
primarily on CUDA but note that our changes are equally
applicable to OpenCL. This section outlines the technical
and philosophical challenges we must overcome to extend
MPI to accelerators and the GPU specifically.

3.1 MPI Ranks and Accelerators
MPI provides ranks in MPI COMM WORLD only to pro-

cesses. DCGN provides a variable number of ranks (slots) to
both processes and accelerators. GAMPI provides a rank to
each accelerator, though it does not allow the accelerator to

2This has been made redundant thanks to 0-copy, as well
as other advances in CUDA 4 [4] such as a unified address
space between all CPUs and GPUs on a node.

source or sink communication. cudaMPI allows accelerator
memory to be used as the source and sink for communica-
tion, but does not give the accelerator a rank and does not
allow the accelerator to execute MPI calls (the CPU must
do so). The space of possibilities for how to assign ranks
is very large, and we are still determining which solution is
best. Following is a list of the tenable choices for how to
assign ranks to accelerators, along with their effects on the
interface, implementations, and usage model of MPI.

3.1.1 No Ranks for Accelerators
This is the current model supported by MPI. Under

this model, no changes to the MPI implementation must be
made, but users that wish to use accelerators cannot make
MPI calls from within accelerator kernels. With a unified ad-
dress space (as is offered by the most recent CUDA toolkit),
pointers to accelerator memory can be passed to MPI func-
tions.

Changes to MPI.
With no ranks given to accelerators, there are little to no

changes to the MPI. In some cases, the MPI implementa-
tion might have extensions to handle data transfers between
system memory and the accelerator. However, we do not
feel this is a worthwhile extension.

Application Usage Model.
As this is the default model for MPI, the application usage

model remains unchanged.

MPI Implementation Implications.
As there are no changes to the MPI, the implementation

implications are nil.

3.1.2 Several Ranks per Accelerator Context
This is the model used by DCGN. In it, each accelerator

context is given a variable number of ranks (slots), spec-
ified by the user at runtime. Accelerators are controlled
by library-spawned threads; GPU kernels can execute com-
munication requests but the CPU threads controlling them
cannot.

Several ranks per accelerator context make sense because
many accelerators have more than one core. There does not
exist a “one-size-fits-all” best mapping of ranks to threads/
blocks/SMs on a GPU, nor on a cell. However, MPI allows
tags (DCGN does not), hence more than one rank might
simply create extra overhead for an MPI implementation.

Changes to MPI.
The changes to MPI in this case are significant. First and

foremost, MPI transitions from a process-based model to a
thread-based model. Second, the MPI must do one of two
things. Either have a method for an accelerator thread to
dynamically bind to one rank from a subset of ranks, or have
every MPI call require an extra argument, the source rank.
We require this because every thread in the accelerator can
make MPI calls, but MPI has no way of knowing from which
of the many possible source ranks the call originates.

Application Usage Model.
On the CPU, the usage model deviates slightly. First and

foremost, an MPI process now has many threads: one thread

per accelerator, plus the main thread. The accelerator-
controlling threads are spawned from within MPI Init. They
exist solely to execute accelerator kernels, though they can
use the rank given to the CPU process, just like in a multi-
threaded MPI implementation. From within the main CPU
thread and the accelerator kernels, the usage model stays
the same: simply execute code and when an MPI call is
made, the library will handle it accordingly.

Kernels are executed in the usual way provided by their
own API (i.e. the MPI does not provide a wrapper for launch-
ing kernels), and are always asynchronous. However, in or-
der for MPI to monitor for communication calls from the
accelerator, the user must call an MPI-provide polling or
blocking function while kernels are running.

MPI Implementation Implications.
The implications to MPI are significant. First and fore-

most, either new functions for binding accelerator threads
to ranks must be created, or every MPI call must have its
signature modified to allow for a source rank to be speci-
fied. Second, the mandatory use of user-space threads devi-
ates significantly from the MPI model. An MPI implemen-
tation must be thread-safe to fully support this execution
model. Third, new functions must be introduced to monitor
for GPU communications explicitly, thus not guaranteeing
progress within a kernel unless user code for the CPU is
written properly.

3.1.3 One Rank per Accelerator Context
This is the analog of one rank per MPI process. Each

accelerator context is given a rank. Significant modifications
to the underlying implementation must be made, and we
further modify the MPI model.

Changes to MPI.
At the highest level, the changes to MPI involve a new

type of process: MPI will now also create processes to con-
trol accelerators. These processes may or may not have any
communication capabilities on the CPU (discussed further
below), meaning MPI could issue a runtime error if a func-
tion like MPI Isend is called from one of these CPU pro-
cesses. Instead, MPI gives a rank to the accelerator context
and the kernels on the accelerator execute MPI function.

Application Usage Model.
On job startup, every process calls MPI Init3, and MPI Init

still has collective semantics. Which (if any) accelerators the
current process controls is also passed implicitly to MPI Init.
To allow users to query which (again, if any) accelerators
they own, we provide a new function MPI Controls accelerators.
The user can branch based on the outcome (much like master-
slave MPI jobs based on a processes rank), using any accel-
erators it may own.

To launch kernels, a process simply invokes the kernel us-
ing the API provided by the accelerator vendor (again, the
MPI does not provide wrappers for launching kernels). To
monitor for communication requests from the accelerator,

3We initially thought it prudent to create a new type of init
function (e.g. MPI Init accelerators), but decided against it
because that would imply the process must know, before ini-
tializing MPI, if it will be an accelerator-controlling process,
or a regular MPI process. Such information should not be
required for a process before MPI initialization.

we suggest that the MPI implementation simply create a
user-invisible thread and use a polling mechanism similar to
the GPU-to-CPU callbacks mechanism [5] implemented by
Stuart et al.

MPI Implementation Implications.
With this model, MPI implementations must support two

implementations of all MPI functions (with the exception of
MPI Init and MPI Finalize): one for CPU processes, and
one for accelerator kernels. MPI must also add the ac-
celerator query function described above. As arguments,
MPI Controls accelerators takes an integer pointer device-
Count, and two integer arrays deviceTypes and deviceIDs.
deviceCount must be initially set to the capacity of the de-
viceTypes and deviceIDs arrays. If the value returned in
deviceCount is zero, then this process owns no accelerators.
If the value is less than zero, the arrays are not large enough
to hold the return values, and must be resized to at least
−1 × deviceCount and the user should then call this func-
tion again. If the value is greater than zero, this is how many
accelerator contexts the current process owns. The types of
each accelerator (e.g. NVIDIA GPU, IBM Cell, etc.) are
stored in deviceTypes, and are identified via MPI constants
(the names of which are yet to be determined). The device
IDs are returned in deviceIDs, and correspond to the logical
IDs of the devices, as enumerated by the appropriate device
driver (e.g. with CUDA, the first GPU is device 0).

One technical problem is how to monitor for communi-
cation requests from kernels. We again propose the polling
mechanism from DCGN and the GPU-to-CPU callbacks re-
search.

Another technical problem is how the MPI should group
accelerators into processes. For example, if a node has four
accelerators, does the user want all four accelerators con-
trolled by one process? Perhaps two processes each control
one accelerator? Or two processes with one accelerator con-
trolled by the first and the other three accelerators controlled
by the second? By default, we think MPI should assign one
accelerator per process. If the user wishes for a different con-
figuration, the MPI implementation should provide a means
to do so via the hosts file or perhaps a new “accelerators”
file.

Regarding implementation implications, we have one more
very important decision to make: whether we allow the CPU
to use a rank from one of the accelerator contexts. If we de-
cide against, we change the behavior of MPI in that MPI
will create user-visible processes wherein the CPU cannot
execute MPI calls, only the accelerator may. This requires
the MPI to branch within every MPI function, or to a func-
tion pointer or jump table, to flag offending calls and raise
an error. It also complicates issues for the user because if
the CPU cannot communicaite, copying data to/from the
accelerator may take extra time. There are only a limited
number of CPU shared-memory pages and these pages do
not necessarily work smoothly with accelerator and Infini-
band drivers, thus making it non-trivial to share buffers, on
a single node with an accelerator, between processes.

On the other hand, if we choose to allow CPU processes
to share ranks with accelerator contexts, we shift the hard-
ships from the user to the MPI implementation. We have
a model wherein we encounter similar challenges to a mul-
tithreaded MPI implementation. We can have concurrent
MPI calls from different threads of execution—in this case

one or more threads will come from the CPU, and one or
more will come from the accelerator. This creates significant
complications for the MPI implementation because it must
maintain matching order for all messages on the same com-
municator, tag, and source. Because MPI calls can come
from multiple sources for the same rank, the implementa-
tion must perform a lot of coordination. Fortunately, there
is already significant research for MPI with threads, and we
can start from there when implementing this for a CPU and
accelerator. The deadlock/application-hang problems asso-
ciated with a multithreaded MPI implementation (e.g. two
threads with the same rank executing an MPI Barrier) are
found here, but they are not unique to MPI with accelera-
tors and thus the previous caveats and avoidance strategies
are valid.

To further complicate matters when sharing a rank be-
tween a CPU process and an accelerator, if the CPU pro-
cess owns multiple accelerator contexts, the implementation
must choose which accelerator shares its rank with the CPU.
We need more time to investigate an optimal strategy, and
potential means for user input into this decision. A good
default is to share with the first accelerator, that is the ac-
celerator signified in deviceIDs[0].

3.1.4 New MPI Function(s) to Spawn Kernels
In this model, we use a new set of MPI functions to

spawn MPI-capable kernels. New communicators are cre-
ated and ranks assigned upon spawning, and all resources
are reclaimed upon finalization of the kernels.

Changes to MPI.
This model offers a good balance between new capabili-

ties and minimal changes to MPI. Accelerators, contexts,
and kernels have no ranks initially. When a user wishes to
launch a kernel on one or more accelerators, and to give those
kernels communication abilities, we propose a new function
similar to MPI Comm spawn, which we will tentatively call
MPI Comm spawn kernels. When this function is called,
MPI launches the kernel on a set of accelerators and gives
each kernel a rank within a new MPI COMM WORLD.
Similar to MPI Comm spawn, the user may pass hints to
the MPI as to where the kernels should be spawned.

If requested, an inter-communicator is provided by the
MPI to allow communication between the CPU processes
and the kernels. Upon completion of the final kernel, MPI
destroys the spawned communicator and reclaims all re-
sources. With this method, existing code in the MPI im-
plementation can largely be left alone. Instead, only new
functions are necessary. Also, users of accelerators need not
worry about running a kernel at the right time to initialize
MPI, finalize MPI, or handle collectives.

Application Usage Model.
The changes to the existing usage model is incremental.

Applications which already use kernels may safely do so. If
a user wishes to grant kernels MPI capabilities, they may do
so via using the spawn function, passing a context for each
accelerator into the spawn function. Otherwise kernels may
still be launched in the usual manner. Only kernels executed
via spawn functions will have MPI capabilities.

MPI Implementation Implications.
The implications to MPI implementations are less signifi-

cant in this model. Again, implementations must support a
polling mechanism to monitor for communication requests,
and also support both CPU and accelerator versions of MPI
functions. Ranks in communicators are associated with ker-
nels, not with contexts, so it is fairly easy for MPI to monitor
for the death of a kernel and reclaim resources.

3.2 MPI Execution Environment and Node and
Process Management

We intend to make many changes to the MPI runtime
environment and the way MPI treats processes, as well as
make changes to the the MPI job launcher (e.g. mpirun). We
need to change the environment to better handle the nature
of accelerator communication requests and the manner in
which accelerator drivers work. And we have to change the
job launcher to account for changes in resources; we now
have accelerators as well as CPUs.

MPI Processes and Accelerators.
Each accelerator has a unique driver, runtime, and exe-

cution environment. To talk about the interaction between
MPI, runtimes, and execution environments, we must ad-
dress each type of accelerator individually and then abstract
away common properties to ease the burden of implementa-
tion. In this section, we specifically address the challenges
presented with NVIDIA GPUs and CUDA but focus on the
higher-level points that apply to all accelerators.

CUDA initializes and controls GPUs through a data struc-
ture called a context. In previous implementations of CUDA,
a context was thread-specific, meaning only the thread that
created the context could access the GPU. With CUDA 4.0,
this is no longer the case: any thread can access any GPU
safely. This new freedom makes it tempting to create a CPU
MPI process, and have it spawn as many threads as there
are GPUs to control each GPU. However, too many issues
arise with the use of threads. The first is address spaces:
any memory allocations by one thread implicitly affect the
address space of all other threads in the same process. The
second complication is with global variables. While frowned
upon in development, many MPI applications utilize global
variables but do not account for extra threads in their pro-
cess space. Also, using threads in an MPI library forces the
library to have layers of thread safety. Even more subtle
complications exist, and these issues make us lean towards
maintaining the use of processes for MPI computing primi-
tives.

As MPI creates all processes for a job (including accelerator-
controlling processes), and because MPI cannot implicitly
monitor the accelerator for communication requests (it must
use a polling mechanism similar to that of DCGN), we must
create a simple model for users to accomplish both CPU and
accelerator communication. We have come up with several
options and discuss them later.

Provided Communicators.
At startup, MPI provides a default global communicator.

Taking inspiration from GAMPI, we believe that other com-
municators are useful, specifically, an accelerator-only com-
municator, a CPU-only communicator, and two local-node
only equivalents. The names of these new communicators
are not of primary importance and thus have not yet been
resolved. While the MPI forum had the chance to imple-
ment a local-CPU-only communicator and chose not to, we

DCGN [6] cudaMPI [3] GAMPI [1] MPIWA

CPU-GPU Buffer Sharing Yes Yes Yes Yes
GPU Ranks Yes No Yes Yes
Extra Communicators No No Yes Yes
CPU + GPU Collectives Yes Yes Limited∗ Yes
GPU Source/Sink Comm Yes No No Yes
Standard MPI Calls on the GPU No No No Yes
MPI2 Feature Support No Limited† Limited† Limited†

Table 1: Feature Support provided by the three major implementations of message passing on GPUs, and our proposed
implementations.
∗ Only between CPUs and GPUs on the same node.
† Only the CPU can execute most MPI2 calls, and both the source and destination must be CPUs. We require further time
to investigate the impact of the CUDA 4.0 unified address space on features such as one-sided communication.

believe that all these communicators, in the era of accelera-
tors and multi-core, are quite sensible.

The specific names of these communicators are secondary
and up for debate. Each of these communicators offer some-
thing of inherent value to MPI programmers, especially when
dealing with collectives. Of course, the accelerators do not
make sense under certain implementations, which we discuss
below.

Collectives.
Many MPI implementations use optimized collective rou-

tines that take advantage of shared-memory APIs for ranks
on a single node. Such optimizations are also useful for ac-
celerators. Any optimizations that exist for CPU ranks on
a single machine can be extended/modified to also include,
or be explicitly for, accelerators in the same node.

Sourcing and Sinking of Communication.
For implementations that support sourcing and sinking

of communication by an accelerator, we believe it best to
support such via accelerator-to-CPU callbacks [5] (mean-
ing a separate thread/process polls flags in device-accessible
memory to look for communication requests). A method
such as this is necessary until a time when accelerator and
NIC vendors give native MPI capabilities to the hardware.
Thanks to CUDA 4, application developers can use native
GPU memory or 0-copy memory in their kernels so the MPI
implementation can poll each with little effort. The trade-
offs in overhead in both can impact application performance,
thus the one to use should be chosen carefully.

3.3 Non-Persistent Accelerator Kernels
Many accelerator models are task-based in a manner sim-

ilar to OpenMP, wherein a computational region spawns
workers (e.g. threads on the GPU) that do some work and
disappear. They are not persistent and with some imple-
mentations, this gives rise to logical deadlocks and/or ap-
plication hangs, specifically when an accelerator is inactive
but needed for a collective or synchronous communication.
We feel that such situations are not an issue with the under-
lying MPI implementation though. It is quite easy to write
a CPU-only MPI application with the same problem (e.g. a
missing barrier call in a certain application which causes all
other nodes to block indefinitely), and thus we feel it is the
responsibility of the application developer to ensure that the
appropriate kernels run as necessary to perform communi-

cation.

3.4 Comparison with Existing Implementations
To give an overview of the feature set given by previous

implementations and by our proposed implementations, we
present Table 1. The rows represent important features we
feel are necessary for a successful MPI implementation on
accelerators. None of the existing implementations provides
the full range of features. The fourth column represents
the characteristics of our proposal, which we call MPI with
Accelerators (MPIWA).

4. REFERENCES
[1] A. Athalye, N. Baliga, P. Bhandarkar, and

V. Venkataraman. GPU aware MPI (GAMPI) - a
CUDA-based approach. Technical report, University of
Texas, Austin, 2010.

[2] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1999.

[3] O. S. Lawlor. Message passing for GPGPU clusters:
CudaMPI. In IEEE International Conference on
Cluster Computing and Workshops, Oct. 2009.

[4] NVIDIA Corporation. NVIDIA CUDA programming
guide. http:
//developer.download.nvidia.com/compute/cuda/4_

0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf,
July 2011.

[5] J. A. Stuart, M. Cox, and J. D. Owens. GPU-to-CPU
callbacks. In Euro-Par 2010 Workshops: Proceedings of
the Third Workshop on UnConventional High
Performance Computing (UCHPC 2010), volume 6586
of Lecture Notes in Computer Science, pages 365–372.
Springer, July 2011.

[6] J. A. Stuart and J. D. Owens. Message passing on
data-parallel architectures. In Proceedings of the 23rd
IEEE International Parallel and Distributed Processing
Symposium, May 2009.

